Last Updated on July 25, 2022 by Bilson Simamora
Kalau dalam MANOVA ada beberapa variabel dependen metrik dan satu atau beberapa variabel non-metrik, maka dalam MANCOVA, ada beberapa variabel dependen metrik, satu atau lebih variabel independen non-metrik serta satu atau lebih variabel independen metrik. Penggunaan variabel metrik (covariate), yang disebut juga variabel konkomitan (concomitant variables), dilakukan untuk mempertajam perbedaan antar grup (grup differences), yang diuji dalam MANOVA. Pada kasus di atas, misalnya, keadaan tidak memiliki kartu berpengaruh negatif terhadap nilai belanja dan frekuensi berbelanja. Pengaruh ini dapat di-intervensi oleh variabel lain, yaitu pendapatan.
Dengan memasukkan pendapatan (atau covariate) diharapkan model lebih akurat dalam memprediksi variabel dependen. Lebih akurat-tidaknya model didasarkan pada perubahan nilai statistik F dan koefisien determinasi R2. Untuk itu, mari kita buka file Mancova-1. Urutan pengerjaannya di SPSS adalah: AnalysisàGeneral Linear Model àMultivariate. Lalu, pada kotak dialog yang muncul masukkan variabel ‘nilai_belanja’ dan ‘frekuensi’ pada sel dependent variables, ‘kartu’ pada fixed factors dan ‘pendapatan’ pada sel covariates.
Cara menginterpretasi nilai Box’s M, Lavene Test dan multivariates measures sama dengan contoh pada Manova. Silakan anda coba sendiri.
Berdasarkan Output 1 terlihat bahwa rata-rata ‘nilai belanja’ [F(1,21)= 17.484, sig.=0.000) maupun ‘frekuensi berbelanja’ [F(1,21)= 16.198, sig.=0.000] berbeda signifikan berdasarkan adjusting pada kepemilikan kartu. Namun, dibandingkan dengan pada kasus MANOVA sebelumnya, terdapat perbedaan koefisien determinasi (R2). Kali ini, untuk nilai belanja, adjusted R2=8.42, meningkat dari MANOVA sebelumnya yang 0.600. Sedangkan untuk frekuensi berbelanja, adjusted R2 meningkat dari 0.604 menjadi 0.800. Dengan kata lain, MANCOVA bisa lebih akurat dibanding MANOVA.
Untuk semakin memperdalam pemahaman, mari kita bahas masalah penelitian kedua tentang faktor-faktor yang mempengaruhi prestasi mahasiswa. Kita ajukan hipothesis bahwa prestasi kuliah dipengaruhi oleh kerajinan (rajin vs tidak rajin), minat pada jurusan (berminat vs tidak berminat) dan intelektualitas (IQ). Prestasi kuliah adalah variabel laten yang tidak bisa diukur langsung. Dalam penelitian ini indikatornya ialah indeks prestasi kumulatif dan waktu kuliah.
Apabila kita menggunakan MANOVA, yang kita uji hanyalah perbedaan prestasi kuliah antar kategori. Dalam kategori yang sama, prestasi kuliah individu dianggap sama. Nah, di sinilah letak masalahnya. Logikanya, prestasi orang-orang pada kategori yang sama pun, misalnya sama-sama rajin dan sama-sama berminat pada jurusan yang dipilihnya, bisa saja berbeda. Artinya, ada variabel lain yang mengganggu (intervening variable). Untuk kasus ini kita anggap variabel dimaksud adalah kecerdasan intelektual (IQ). Pemikirannya adalah semakin cerdas seseorang dan semakin tinggi pendapatannya, prestasi kuliah semakin tinggi pula.
Buka file ‘Data Mancova-2.sav ’. Kemudian klik urutan menu berikut ini pada SPSS: AnalysisàDescriptive AnalysisàExplore. Pada kotak dialog yang muncul masukkan variabel ‘IPK’ dan ‘lama’ ke dalam sel ‘Dependent List’. Kemudian klik ‘Plot’ dan klik ‘Normality plot with test’. Tujuannya untuk menguji:
- Ho: Variabel ‘lama’ berdistribusi normal
- Ho: Variabel ‘IPK’ berdistribusi normal
Hasilnya, dengan uji Kolmogorov-Smirnov, IPK memiliki nilai 0.124 dengan nilai sig.=0.200, ‘lama’ memiliki nilai 0.157 dengan nilai sig.0.113. Kesimpulan untuk kedua variabel adalah terima Ho. Artinya data berdistribusi normal. Kesimpulan yang sama diberikan oleh Uji Shapiro-Wilk.
Selanjutnya, lakukan prosedur MANCOVA: Analysis à General Linear Modelling à Multivariate. Pada kotak dialog yang muncul, isikan ‘IPK’ dan ‘lama’ pada sel ‘Dependent Variables’, ‘kerajinan’ dan ‘minat’ pada sel ‘Fixed Factor(s) dan ‘IQ’ serta ‘pendapatan’ pada sel ‘Covariate(s). Lalu, klik ‘Options’ dan tandai ‘Homogeneity test’.
Nilai Box’s M adalah 9.851. Nilai ini dirubah ke dalam nilai F=1.000 dengan nilai sig.=0.426. Dengan nilai ini, seperti prosedur yang disajikan pada MANOVA, kita putuskan Ho diterima. Kesimpulannya, matrik kovarian adalah sama antar grup-grup yang ada.
Kemudian, dari Output 3, berdasarkan uji Pillai’s Trace, Wilks’ Lambda, Hotelling’s Trace dan Roy’s Largest Root, dapat kita simpulkan bahwa IQ, kerajinan, minat serta interaksi antara kerajinan dan minat berpengaruh pada prestasi kuliah (sig.<0.05), kecuali pendapatan (sig.>0.05).
Uji Lavene menunjukkan bahwa Ho: error variance adalah sama untuk semua grup, terbukti untuk variabel ‘IPK’ (nilai F=0.012, nilai sig.=0.998) dan ‘lama’ (nilai F=0.488, nilai sig.=0.694). Dengan demikian, uji ANOVA dan ANCOVA untuk masing-masing variabel dependen (yaitu ‘IPK’ dan ‘lama’) dapat dilakukan.
Dari Output 6, dengan menggunakan batas penolakan Ho adalah α=0.05, kita dapat nyatakan, pertama, rata-rata IPK berbeda berdasarkan: ‘minat’ (F(1,19)=10.213, sig.=0.005). Kedua, rata-rata lama kuliah berbeda signifikan berdasarkan ‘kerajinan’ [F (1,21)=19.583, sig.=0.000], dan ‘minat’ [F(1,19)=24.129, sig.=0.000]. Ketiga, interaksi antara ‘kerajinan’ dan ‘minat’ tidak membedakan rata-rata ‘IPK’ (F=2.170, sig.=0.157) dan ‘lama’ (F=1.317, sig.=0.265).
Sampai poin ini kita baru menyimpulkan bahwa bahwa suatu variabel independen berpengaruh pada variabel dependen. Pertanyaan selanjutnya, bagaimana arah pengaruhnya, apakah positif ataukah negatif? Pertanyaan ini dapat dijawab melalui uji-t, seperti disajikan pada Output 6 di bawah ini. Yang diuji adalah koefisien persamaan.
Persamaan IPK adalah:
IPK = – 0.441 + 0.031*IQ – 0.00000001125*pendapatan – 0.588*malas – 0.818*tidak berminat + 0.529 *tidak berminat*malas.
Pada persamaan tersebut, pengaruh masing-masing variabel terhadap IPK adalah sebagai berikut:
- IQ berpengaruh positif terhadap IPK (β1=0.031, t=4.299, sig./2=0.000/2=0.000).
- Pendapatan berpengaruh negatif tidak signifikan (β2=00000001125, t=-0.526, sig./2=0.605/2=0.3025).
- Status ‘malas’ (kerajinan=1) berpengaruh negatif signifikan (β3=-0.588, t=-2.798, sig./2=0.011/2=0.0055).
- Status tidak berminat (minat=1) berpengaruh negatif signifikan (β4=-0.818, t= t=-3.355, sig./2=0.003/2=0.00015).
- Interaksi antara ‘malas’ dan ‘tidak berminat’ berpengaruh positif tidak signifikan (β5=0.529, t=1.473, sig./2=0.157/2=0.0785).
Pada uraian di atas nilai sig. kita bagi dua karena kita melakukan uji satu arah. Ada empat kelompok responden dalam penelitian ini, yaitu rajin-berminat, rajin-tidak berminat, malas-berminat dan malas-tidak berminat. Perlu diketahui bahwa persamaan di atas adalah untuk kelompok malas-tidak berminat. Untuk ketiga kelompok lain, persamaan tinggal disesuaikan, sebagai berikut:
- Kelompok malas dan berminat: IPK = – 0.441 + 0.031*IQ – 0.00000001125*pendapatan – 0.588*malas.
- Kelompok rajin dan tidak berminat: IPK = – 0.441 + 0.031*IQ – 0.00000001125*pendapatan – 0.818*tidak berminat.
- Kelompok rajin dan berminat: IPK = – 0.441 + 0.031* IQ.
Pada persamaan kelompok rajin dan berminat, yaitu IPK = – 0.441 + 0.031* IQ, kerajinan=2 (rajin) dan minat=2 (berminat) tidak diperhitungkan karena diberi koefisien=0 oleh SPSS seperti terlihat pada Output 7. Artinya, keadaan ‘rajin dan berminat’ inilah yang dijadikan patokan oleh SPSS. Persamaan lengkap di atas dapat dipakai untuk mendeteksi efek penyimpangan terhadap keadaan ‘rajin dan berminat’ ini. Jadi, kita tidak dapat menyimpulkan bahwa keadaan ‘rajin’ dan ‘berminat’ berpengaruh positif terhadap IPK. Akan tetapi, keadaan ‘malas’ dan ‘tidak berminat’ berpengaruh negatif terhadap IPK, seperti ditunjukkan pada persamaan-persamaan di atas.
Sekarang tugas anda adalah menjelaskan faktor-faktor yang mempengaruhi lama kuliah (variabel ‘lama’) dengan menggunakan hasil yang tersaji pada Output 7.
Referensi
Hair, Jr., J.F., Black, W.C., Bobin, J.B., Anderson, R.E. & Thatam, R.L. (2014). Analisis Data Multivariate. 7th Edition. Upper Saddle River: Pearson Prentice-Hall, Inc.
Huberty, C. J., & Morris, J. D. (1989). Multivariate analysis versus multiple univariate analyses. Psychological Bulletin, 105, 302-308.